

 Navigation

 	
 index

 	
 next |

 	Localshop 0.8.3 documentation

Welcome to Localshop

[image: Latest Version]
 [https://pypi.python.org/pypi/localshop/][image: https://travis-ci.org/mvantellingen/localshop.svg?branch=develop]
 [https://travis-ci.org/mvantellingen/localshop][image: https://coveralls.io/repos/mvantellingen/localshop/badge.svg?branch=develop&cache=1]
 [https://coveralls.io/r/mvantellingen/localshop?branch=develop][image: Requirements Status]
 [https://requires.io/github/mvantellingen/localshop/requirements/?branch=develop]Localshop is a PyPI server which automatically proxies and mirrors PyPI packages
based upon packages requested. It also supports the uploading of local (private)
packages.

Contents:

	Installing
	Docker alternative

	How it works
	Uploading local/private packages

	Using the shop for package installation

	Credentials for authentication

	Adding users

	Settings
	LOCALSHOP_DELETE_FILES

	LOCALSHOP_DISTRIBUTION_STORAGE

	LOCALSHOP_HTTP_PROXY

	LOCALSHOP_ISOLATED

	LOCALSHOP_USE_PROXIED_IP

	LOCALSHOP_RELEASE_OVERWRITE

	LOCALSHOP_VERSIONING_TYPE

	Contributing
	Get started

	Style guide

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Localshop 0.8.3 documentation

Installing

Download and install localshop via the following command:

pip install localshop

This should best be done in a new virtualenv. Now initialize your localshop
environment by issuing the following command:

localshop init

If you are upgrading from an earlier version simply run:

localshop upgrade

And then start it via:

gunicorn localshop.wsgi:application

You will also need to start the celery daemon, it’s responsible for downloading
and updating the packages from PyPI. So open another terminal, activate your
virtualenv (if you have created one) and run the following command:

localshop celery worker -B -E

You can now visit http://localhost:8000/ and view all the packages in your
localshop!

Note: If you prefer to start listening on a different network interface and
HTTP port, you have the pass the parameter -b to gunicorn. For example,
the following command starts localshop on port 7000 instead of 8000:

gunicorn localshop.wsgi:application -b 0.0.0.0:7000

The next step is to give access to various hosts to use the shop. This is done
via the webinterface (menu -> permissions -> cidr). Each ip address listed there
will be able to download and upload packages. If you are unsure about ips
configuration, but still want to use authentication, specify “0.0.0.0/0” as the
unique cidr configuration. It will enable for any ip address.

Docker alternative

Install docker and docker-compose and then run:

cp docker.conf.py{.example,}
docker-compose build
docker-compose run localshop syncdb
docker-compose run localshop createsuperuser
docker-compose up

You should be able to see localshop running in http://docker-host:8000.

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Localshop 0.8.3 documentation

How it works

Packages which are requested and are unknown are looked up on pypi via the
xmlrpc interface. At the moment the client downloads one of the files which
is not yet mirror’ed a 302 redirect is issued to the correct file (on pypi).
At that point the worker starts downloading the package and stores it in
~/.localshop/files so that the next time the package is request it is
available within your own shop!

Uploading local/private packages

To upload your own packages to your shop you need to modify/create a .pypirc
file. See the following example:

[distutils]
index-servers =
 local

[local]
username: myusername
password: mysecret
repository: http://localhost:8000/simple/

To upload a custom package issue the following command in your package:

python setup.py upload -r local

It should now be available via the webinterace

Using the shop for package installation

To install packages with pip from your localshop add -i flag, e.g.:

pip install -i http://localhost:8000/simple/ localshop

or edit/create a ~/.pip/pip.conf file following this template:

[global]
index-url = http://<access_key>:<secret_key>@localhost:8000/simple

Then just use pip install as you are used to do.
You can replace access_key and secret_key by a valid username and password.

Credentials for authentication

If you don’t want to use your Django username/password to authenticate
uploads and downloads you can easily create one of the random credentials
localshop can create for you.

Go to the Credentials section and click on create. Use the access key
as the username and the secret key as the password when uloading packages.
A ~/.pypirc could look like this:

[distutils]
index-servers =
 local

[local]
username: 4baf221849c84a20b77a6f2d539c3e8a
password: 200984e70f0c463b994388c4da26ec3f
repository: http://localhost:8000/simple/

pip allows you do use those values in the index URL during download, e.g.:

pip install -i http://<access_key>:<secret_key>@localhost:8000/simple/ localshop

So for example:

pip install -i http://4baf221849c84a20b77a6f2d539c3e8a:200984e70f0c463b994388c4da26ec3f@localhost:8000/simple/ localshop

Warning

Please be aware that those credentials are transmitted unencrypted over
http unless you setup your localshop instance to run on a server that
serves pages via https.

In case you ever think a credential has been compromised you can disable it
or delete it on the credential page.

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Localshop 0.8.3 documentation

Adding users

You can add users using the Django admin backend at /admin. In order for the
user to be able to generate credentials for his account, he needs the following
four user permissions:

	permissions.add_credential

	permissions.change_credential

	permissions.delete_credential

	permissions.view_credential

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Localshop 0.8.3 documentation

Settings

There are a few settings to set in ~/.localshop/localshop.conf.py that
change the behaviour of the localshop.

LOCALSHOP_DELETE_FILES

	default:	False

If set to True files will be cleaned up after deleting a package or
release from the localshop.

LOCALSHOP_DISTRIBUTION_STORAGE

	default:	'storages.backends.overwrite.OverwriteStorage'

The dotted import path of a Django storage class to be used when uploading
a release file or retrieving it from PyPI.

LOCALSHOP_HTTP_PROXY

	default:	None

Proxy configuration used for Internet access. Expects a dictionary configured
as mentioned by
http://docs.python-requests.org/en/latest/user/advanced/#proxies

LOCALSHOP_ISOLATED

	default:	False

If set to True Localshop never will try to redirect the client to PyPI.
This is useful for environments where the client has no Internet connection.

Note

If you set LOCALSHOP_ISOLATED to True, client request can be delayed
for a long time because the package must be downloaded from Internet before
it is served. You may want to set pip environment variable
PIP_DEFAULT_TIMEOUT to a big value. Ex: 300

LOCALSHOP_USE_PROXIED_IP

	default:	False

If set to True Localshop will use the X-Forwarded-For header to validate
the client IP address. Use this when Localshop is running behind a reverse
proxy such as Nginx or Apache and you want to use IP-based permissions.

LOCALSHOP_RELEASE_OVERWRITE

	default:	True

If set to False, users will be preveneted from overwriting already existing
release files. Can be used to encourage developers to bump versions rather than
overwriting. This is PyPI’s behaviour.

LOCALSHOP_VERSIONING_TYPE

	default:	None

If set to False, no versioning “style” will be enforced.

If you want to validated versions you can choose any Versio [https://pypi.python.org/pypi/Versio] available backends.

IMPORTANT the value of this config must be a full path of the wanted class e.g. versio.version_scheme.Pep440VersionScheme.

	Simple3VersionScheme which supports 3 numerical part versions (A.B.C where A, B, and C are integers)

	Simple4VersionScheme which supports 4 numerical part versions (A.B.C.D where A, B, C, and D are integers)

	Pep440VersionScheme which supports PEP 440 [http://www.python.org/dev/peps/pep-0440/] versions (N[.N]+[{a|b|c|rc}N][.postN][.- devN][+local])

	PerlVersionScheme which supports 2 numerical part versions where the second part is at least two digits A.BB where A and B - are integers and B is zero padded on the left. For example: 1.02, 1.34, 1.567)

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Localshop 0.8.3 documentation

Contributing

Want to contribute with Localshop? Great! We really appreciate your help. But before digging into your new
fluffy-next-millionaine-feature code keep in mind that you MUST follow this guide to get your pull
requests approved.

Get started

	Fork the project and follow the installation instructions [1].

	Your code MUST contain tests. This is a requirement and no pull request will be approved if it lacks tests. Even
if your’re making a small bug fix we want to ensure that it will not introduce any another bug.

	Help to keep the documentation up-to-date is really appreaciated. Always check if your’re making changes that
make the documentation obsolete and update it.

	Squash your commits [http://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Squashing-Commits] before making a pull request whenever possible. This will avoid history pollution with middle
commits that breaks things. Your pull request should be a single commit with all your changes.

	Open a pull request [https://help.github.com/articles/using-pull-requests/]. Usually, the target branch at the main repository will be develop, but if your’re
sending a bugfix to avoid the extinction of human race, maybe you want to target the master branch.

Tip

Use a meaningful and convincing pull request description. Feel free to use emojis [http://www.emoji-cheat-sheet.com] to give us a clue of what kind
changes your’re making. The Style guide contains some of our preferred ones.

Style guide

	Follow the PEP8 [https://www.python.org/dev/peps/pep-0008/]. The only exception is the maximum line width. We uses 120 characters instead of 79.

	Make sure that your code does not raises any Pylint errors or warnings.

	Always group the imports in 3 blocks: native libraries, third party libraries and project imports.

	Keep the import block alphabetically ordered. If you use Sublime Text, you can do this by selecting the import block
and hitting F9

	Avoid polluting the current namespace with lots of imports. If you find yourself in a situation of importing a lot
of symbols from the same package, consider import the package itself.

Wrong way:

from django.core.exceptions import (ImproperlyConfigured, AppRegistryNotReady, FieldError, DisallowedHost,
 DisallowedRedirect, DjangoRuntimeWarning)

Preferred way:

from django.core import exceptions as djexc

Commit messages

	Limit the first line to 72 characters or less

	Always use English

	
	Consider starting the commit message with an applicable emoji:

	
	[image: lipstick] [http://www.tortue.me/emoji/lipstick.png] :lipstick: when improving the format/structure of the code

	[image: fire] [http://www.tortue.me/emoji/fire.png] :fire: when removing code or files

	[image: bug] [http://www.tortue.me/emoji/bug.png] :bug: when fixing a bug

	[image: beetle] [http://www.tortue.me/emoji/beetle.png] :beetle: when fixing a bug

	[image: book] [http://www.tortue.me/emoji/book.png] :book: when writing docs

	[image: green_heart] [http://www.tortue.me/emoji/green_heart.png] :green_heart: when fixing the CI build

	[image: white_check_mark] [http://www.tortue.me/emoji/white_check_mark.png] :white_check_mark: when adding tests

	[image: x] [http://www.tortue.me/emoji/x.png] :x: when commiting code with failed tests

	[image: arrow_up] [http://www.tortue.me/emoji/arrow_up.png] :arrow_up: when upgrading dependencies

	[image: arrow_down] [http://www.tortue.me/emoji/arrow_down.png] :arrow_down: when downgrading dependencies

Footnotes

	[1]	Installing

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Localshop 0.8.3 documentation

Index

 Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

 _static/comment.png

search.html

 Navigation

 		
 index

 		Localshop 0.8.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Michael van Tellingen.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

